Digestão e absorção dos Lipídios:

Os lipídios da dieta são emulsificados no duodeno pela ação detergente dos sais biliares. Os sais biliares são moléculas anfipáticas sintetizadas pelo fígado a partir do colesterol e temporariamente armazenados na vesícula biliar e liberados no intestino delgado após a ingestão de gorduras. Os principais são o glicocolato de sódio e o taurocolato de sódio derivados dos ácidos glicocólico e taurocólico, respectivamente. A emulsificação é possível pela natureza anfipática dos sais biliares. A porção polar das moléculas de sais biliares, interage com a água, enquanto o grupo não-polar interage com os lipídeos hidrofóbicos. Desse modo, os lipídios são finamente dispersos no meio aquoso.

Três enzimas hidrolíticas são encontradas no suco pancreático secretado no duodeno: lipase−pancreática, colesterol−esterase e fosfolipase A2.

Os ésteres de colesteril ingeridos na dieta são emulsificados pelos sais biliares e, então, hidrolisados pela colesterol−esterase a colesterol e ácidos graxos livres:
Éster de colesteril + H2O → colesterol-elastase→ Colesterol + ácidos graxos

Os produtos da lipólise são incorporados a miscelas mistas com sais biliares conjugados. As miscelas são os principais veículos no movimento dos ácidos graxos, monoacigliceróis e glicerol da luz para a superfície das células da mucosa intestinal onde ocorre a absorção. Na ausência de sais biliares, a absorção dos lipídeos é drasticamente reduzida com a presença excessiva de gorduras nas fezes (esteatorréia).

Na célula da mucosa intestinal, o destino dos ácidos graxos absorvidos é determinado pelo comprimento de suas cadeias carbonadas. Ácidos graxos de cadeia curta (2-10 átomos de carbono) são hidrossolúveis, sendo diretamente liberados para o sangue portal sem alterações e transportados ao fígado unidos à albumina. Os ácidos graxos de cadeia longa são convertidos novamente em triacilgliceróis e agrupados com o colesterol, fosfolipídeos e proteínas específicas (apolipoproteínas) que os tornam hidrossolúveis. Esses agregados lipoprotéicos são denominados quilomícrons e são liberados para os vasos linfáticos intestinais e a seguir para o sangue.
A lipoproteína-lipase ligada à superfície endotelial dos capilares sangüíneos, converte os triacilgliceróis dos quilomícrons em ácidos graxos e glicerol. Esses compostos são captados por vários tecidos, principalmente, o adiposo e o muscular. A lipoproteína-lipase é ativada por ligação a uma proteína componente dos quilomícrons, a apoproteína C−II.

A concentração de ácidos graxos livres no organismo é baixa, pois suas moléculas são detergentes (formam micelas) e podem romper as membranas celulares. Após entrar nas células, provavelmente com o auxilia de proteínas, os ácidos graxos podem ser (1) oxidados para gerar energia, (2) armazenados como triacilgliceróis ou (3) usados para a síntese de membranas.
OBS: Muitos ácidos graxos são empregados pelo fígado e células musculares, especialmente no músculo cardíaco, que prefere utilizar ácidos graxos mesmo quando houver disponibilidade de carboidratos.

Absorção dos Ácidos Biliares
A absorção dos lipídios dietéticos já terá sido tipicamente completada quando essas substâncias alcançarem o jejuno médio, em contraste os ácidos biliares são absorvidos essencialmente na parte terminal do íleo.

Lipólise

Mobilização dos triacilgliceróis
O tecido adiposo é formado principalmente por triacilgliceróis. Durante o jejum, exercício vigoroso e em resposta ao estresse, os triacilgliceróis são hidrolisados (quebram suas ligações éster) em ácidos graxos e glicerol pela ação da lipase hormônio-sensível (HSL).

Os hormônios adrenalina e glucagon (secretados em resposta a baixos teores de glicemia) ativam a adenilil−ciclase na membrana plasmática dos adipócitos. A adenilil− ciclase transforma ATP em AMPc (AMP cíclico). A proteína− cinase dependente de AMPc, fosforila e, assim, ativa a lipase. Os triacilgliceróis são hidrolizados em ácidos graxos e glicerol. Elevados teores de glicose e de insulina exercem atividades opostas, acumulando triacilgliceróis no tecido adiposo.

No trato gastrointestinal, os lipídeos são emulsificados, digeridos por enzimas hidrolíticas e absorvidos pelas células da mucosa intestinal.

Em razão da pouca solubilidade em meio aquoso, os lipídeos se agregam em grandes complexos dificultando a hidrólise enzimática e a absorção intestinal. Esses obstáculos são contornados pelo emprego de agentes emulsificantes que aumentam a interface lipídio-água permitindo a ação das enzimas intestinais hidrossolúveis, também como a “solubilização” dos produtos de hidrólise.

Beta-oxidação (Oxidação dos ácidos graxos)

Os ácidos graxos são degradados por oxidação em uma seqüência repetitiva de reações que produzem moléculas de acetil−CoA e liberam energia. O mecanismo é conhecido como β –oxidação na qual os ácidos graxos são degradados pela remoção de unidades de dois carbonos (acetil−CoA).
Nas mitocôndrias, os ácidos graxos são degradados pela oxidação com a remoção sucessiva de fragmentos de dois carbonos na forma de acetil−CoA, posteriormente oxidada a CO2 no ciclo do ácido cítrico. Em cada ciclo da β−oxidação, forma-se um mol de acetil−CoA, um de FADH2 e um de NADH. No fígado, a energia liberada pela β-oxidação é empregada para dirigir a gliconeogênese.
Obs: Durante o jejum prolongado, a maioria dos tecidos é capaz de utilizar os ácidos graxos como fonte de energia. O tecido nervoso e os eritrócitos não empregam os ácidos graxos como combustíveis.

Produção de energia na oxidação dos ácidos graxos
Cada volta do ciclo de β−oxidação produz um NADH, um FADH2 e uma acetil−CoA. A oxidação do NADH e do FADH2 na cadeia mitocondrial transportadora de elétrons acoplada à fosforilação oxidativa, produz 2,5 e 1,5 ATP, respectivamente. Cada molécula de acetil−CoA proveniente da β−oxidação é metabolizada a CO2 e água no ciclo do ácido cítrico e fosforilação oxidativa, com a produção de 10 ATP. No entanto, na ativação do ácido graxo são consumidos dois equivalentes de ATP (um ATP é transformado em AMP + 2Pi).
A produção de ATP a partir da β-oxidação do ácido palmítico pelo ciclo do ácido cítrico e da fosforilação oxidativa é resumida na tabela abaixo.

Cetose (Formação de corpos cetônicos)

Em certas condições metabólicas, tais como, jejum prolongado, inanição e diabete melito, ocorre aumento na velocidade da β−oxidação, tornando necessário reciclar o excesso de acetil−CoA e liberar a CoA livre para novas β−oxidações. No fígado, o grupo acetil da acetil−CoA é transformado em corpos cetônicos em processo chamado cetogênese. Os corpos cetônicos consistem de 2 moléculas unidas de acetil e são utilizados como combustível hidrossolúvel pelos tecidos extra−hepáticos.
Obs: A síntese de corpos cetônicos só ocorre no fígado e se dá a partir da β-oxidação.
Parte do acetoacetato é reduzido a β−hidroxibutirato pela enzima β−hidroxibutirato−desidrogenase NAD+−dependente ligada à membrana mitocondrial interna.
Em condições normais a formação de acetona é negligenciável, no entanto, em acúmulos patológicos de acetoacetato, a quantidade de acetona no sangue pode ser detectada no ar expirado pelo paciente.

A presença aumentada de corpos cetônicos no sangue e na urina acompanhado de odor de acetona no ar expirado, é denominada cetose. Essa condição ocorre quando a velocidade de produção de corpos cetônicos pelo fígado excede a capacidade de sua utilização pelos tecidos periféricos, resultando em acúmulo no sangue (cetonemia). Ao ultrapassar o limiar renal, essas substâncias aparecem na urina (cetonúria).
Obs: Os corpos cetônicos são os únicos lipídios que não necessitam ser carreados por uma proteína devido a serem hidrossolúveis.

A cetogênese ocorre em três reações:
1. Formação de acetoacetil−CoA.
A primeira reação na formação do acetoacetato é a condensação de duas moléculas de acetil−CoA para gerar acetoacetil−CoA, catalisada pela acetil−CoA−acetiltransferase.
2. Formação de HMG−CoA.
A acetoacetil−CoA é convertida a HMG−CoA por condensação com uma terceira molécula de acetil−CoA pela ação da hidroximetilglutaril− CoA−sintase.
3. Formação de acetoacetato e acetil−CoA.
A clivagem da HMG−CoA fornece o acetoacetato livre pela enzima hidroxi−metilglutaril−CoA−liase.

Em jejum prolongado e diabete melito, como conseqüência do direcionamento do oxaloacetato para a formação de glicose (gliconeogênese), ocorre limitação da operação do ciclo do ácido cítrico. Desse modo, a grande quantidade de acetil−CoA produzida pela β−oxidação dos ácidos graxos no fígado é canalizada para a síntese de corpos cetônicos. Quando a formação de corpos cetônicos atinge níveis acima da capacidade compensatória dos sistemas tampões fisiológicos, desenvolve-se cetoacidose.
Obs: O acetil é o 2º substrato mais utilizado (1º lugar- glicose) porque não necessita de proteínas para ser carreado (o acetil é hidrossolúvel).

Vários tecidos, mais notadamente o músculo cardíaco e esquelético, empregam corpos cetônicos para gerar energia. O cérebro aumenta consideravelmente a utilização de corpos cetônicos como fonte de energia durante o período de jejum prolongado e inanição, economizando a glicose e reduzindo a degradação da proteína muscular para a gliconeogênese.

O catabolismo dos corpos cetônicos ocorre da seguimte forma:
1. Nos tecidos periféricos, o β−hidroxibutirato é oxidado a acetoacetato.
2. A acetoacetato é então ativado pela ação de uma tioforase que emprega a succinil−CoA como fonte de CoA, formando acetoacetil−CoA.
3. Esta última sofre clivagem pela tiolase, produzindo duas moléculas de acetil−CoA que entram no ciclo do ácido cítrico.

Lipogênese

Biossíntese de ácidos graxos
Alguns ácidos graxos insaturados, tais como, o linolênico e linoléico, não são supridos pela dieta, sendo denominados ácidos graxos essenciais. Esses ácidos graxos são abundantes em peixes e óleos vegetais.

Os ácidos graxos são formados a partir de acetil−CoA proveniente de substratos lipogênicos (glicose da dieta, aminoácidos e etanol) A síntese ocorre principalmente no tecido adiposo, no fígado e nas glândulas mamárias de animais em lactação.

Inicialmente é formado o ácido palmítico (cadeia linear saturada com 16 átomos de carbono), a partir do qual outros ácidos graxos são derivados.

A biossíntese dos ácidos graxos é um processo que ocorre exclusivamente no citosol. Contudo, a acetil−CoA gerada nas mitocôndrias não se difunde espontaneamente para o citosol; em lugar disso, atravessa a membrana mitocondrial interna sob a forma de citrato, produzido a partir da condensação do oxaloacetato e acetil−CoA no ciclo do ácido cítrico. Em concentrações elevadas, o ATP inibe a enzima isocitrato−desidrogenase no ciclo do ácido cítrico, provocando o acúmulo de citrato na mitocôndria; o excesso difunde-se livremente para o citosol pela membrana mitocondrial interna por meio do carreador do tricarboxilato. No citosol, a acetil−CoA é regenerada, a partir do citrato pela ação da enzima ATP−citrato−liase.
Obs:Este processo também transfere o oxaloacetato da mitocôndria para o citosol.

Síntese dos ácidos graxos saturados, o ácido palmítico
O ácido palmítico é sintetizado a partir de uma molécula de acetil−CoA e sete moléculas de malonil−CoA. Esta última é produzida pela carboxilação do acetil−CoA. Inicialmente, o CO2 (como bicarbonato, HCO3−) é “ativado” por ligação covalente à biotina com a conversão do ATP em ADP + Pi em reação catalisada pela biotina−carboxilase.

A seguir, o grupo prostético carboxibiotina transfere o grupo carboxilato para o acetil−CoA para formar um composto de três carbonos, a malonil−CoA e regenerar a enzima.

A reação total, catalisada pela acetil−CoA−carboxilase uma enzima composta de três enzimas (proteína transportadora de biotina, biotina−carboxilase e a transcarboxilase) em um único polipeptídeo multifuncional que requer biotina e Mn2+, é a etapa limitante de velocidade na síntese de ácidos graxos nos mamíferos. A acetil−CoA−carboxilase é uma enzima alostérica ativada pelo citrato e isocitrato e inibida por acil−CoA de cadeia longa, como o palmitoil−CoA. A biotina está ligada a um resíduo de lisina da enzima.
Obs: A malonil−CoA é o doador das unidades acetil de dois carbonos para a construção de ácidos graxos.

Síntese de triacilgliceróis
Os triacilgliceróis são sintetizados pela adição de acil-CoA graxo (biossintetizados ou supridos pela dieta) ao glicerol−3−fosfato ou à diidroxiacetona−fosfato. A síntese ocorre principalmente no fígado, intestino e tecido adiposo. O glicerol−3−fosfato é formado por duas vias: A partir da diidroxiacetona−fosfato gerada na glicólise ou formado a partir do glicerol pela ação da glicerol−cinase.
A diidroxiacetona−fosfato é transformada em glicerol−3−fosfato em reação catalisada pela glicerol−3−fosfato−desidrogenase.
No fígado, rim e intestino delgado ocorre a fosforilação do glicerol livre em presença de glicerol−cinase.
Os adipócitos são desprovidos de glicerol−cinase e obtém o glicerol−3−fosfato exclusivamente pela reação da glicerol−3−fosfato−desidrogenase. O glicerol livre obtido na hidrólise dos triacilgliceróis nos adipócitos não é utilizado no próprio tecido e sim, é levado ao fígado onde é transformado em glicerol−3−fosfato pela glicerol−cinase.


Os acil−CoA empregados na síntese dos triacilgliceróis são provenientes de ácidos graxos livres ativados pela ação das acil−CoA−sintetases:
Ácido graxo + CoA + ATP → acil−CoA + AMP + PPi
1. A primeira etapa na biossíntese dos triacilgliceróis é a acilação dos dois grupos hidroxila livres do glicerol−3−fosfato por duas moléculas de acil−CoA graxo para formar diacilglicerol−3−fosfato (fosfatidato ou ácido fosfatídico) em presença da glicerol−3−fosfato−aciltransferase.
2. A enzima fosfatidato−fosfatase converte o diacilglicerol−3−fosfato (fosfatidato) em 1,2−diacilglicerol. O fosfatidato e o 1,2−diacilglicerol são precursores de triacilgliceróis e de glicerofosfolipídeos.
3. Na etapa final da biossíntese de triacilgliceróis ocorre a acilação da posição sn−3 do 1,2−diacilglicerol por meio da diacilglicerol−aciltransferase.

Regulação do metabolismo Lipídico (controle entre a lipólise e a lipogênese)
Ativadores da lipólise
· Glucagon e a adrenalina (liberados quando as reservas energéticas estão baixas) estimulam a fosforilação de várias enzimas.
· Fosforilação da lipase hormônio-sensível presente nos adipócitos, ativa a hidrólise de triacilglicerol.
· A liberação de noradrenalina dos neurônios no sistema nervoso simpático e do hormônio do crescimento da hipófise também ativa a lipase hormônio−sensível.

Subseqüentemente, os ácidos graxos são liberados para o sangue.
Os hormônios também regulam a utilização dos ácidos graxos pelos tecidos. Por exemplo:
· A acetil−CoA−carboxilase é inibida pelo glucagon.
· Baixas concentrações de malonil−CoA, a síntese de ácidos graxos é reduzida. Como a malonil−CoA inibe a atividade da carnitina−acil−transferase I, os ácidos graxos podem ser transportados para a mitocôndria, onde são degradados para gerar energia.

Ativadores da lipogênese
· O efeito da insulina sobre o metabolismo dos ácidos graxos é oposta aos dos hormônios glucagon e adrenalina. A secreção de insulina em resposta a elevados níveis de glicose sangüínea estimula a lipogênese. A insulina induz a síntese de ácidos graxos pela fosforilação da acetil−CoA−carboxilase por um processo independente do mecanismo da proteína-cinase dependente de AMPc. A lipólise simultânea é evitada pela insulina por inibição da ativação da proteína-cinase mediada por AMPc. O processo provoca a desfosforilação (portanto, a inativação) da lipase hormônio-sensível.

Resumo do Metabolismo Lipídico
1. A acetil−CoA exerce papel central na maioria dos processos metabólicos relacionados aos lipídeos. Por exemplo, a acetil−CoA é usada na síntese dos ácidos graxos. Quando os ácidos graxos são degradados para gerar energia, o produto é a acetil−CoA.
2. Dependendo das necessidades energéticas, as novas moléculas de gordura são empregadas para a geração de energia ou são armazenadas nos adipócitos. Quando as reservas de energia do organismos estão baixas, as gorduras armazenadas são mobilizadas em processo denominado lipólise. Na lipólise, os triacilgliceróis são hidrolizados em ácidos graxos e glicerol. O glicerol é transportado para o fígado, onde pode ser usado na síntese de lipídeos ou glicose. A maior parte dos ácidos graxos são degradados para formar acetil−CoA na mitocôndria em processo denominado β−oxidação. A β−oxidação nos peroxissomos encurtam os ácidos graxos muito longos. Outras reações degradam ácidos graxos de cadeia ímpar e insaturados. Quando o produto de degradação dos ácidos graxos (acetil−CoA) está presente em excesso, são produzidos corpos cetônicos.
3. A síntese dos ácidos graxos inicia com a carboxilação da acetil−CoA para formar malonil−CoA. As demais reações da síntese dos ácidos graxos são realizadas pelo complexo ácido graxos sintase.